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Abstract
We present a framework for constructing controlled stochastic differ-
ential equations (SDEs) that exactly sample from a class of probability
distributions with Gaussian tails. By choosing the reference process to
be a linear SDE, we can find the optimal control that guides the system
to a target distribution by only solving a static optimization problem. In
practice, the method lacks robustness due to the high sensitivity to the
algorithm’s parameters.

Motivation
I Computing expectations with respect to complex probability

distributions is ubiquitous in statistics and ML
I Efficient sampling methods for distributions yield estimators for

approximating expectations
I Finding controlled SDEs enables exact sampling of target

distributions

Problem setting
I Given an unnormalized target density π(x), design reference

SDE

dXt = A(Xt) dt + B(Xt) dWt, X0 = x0 (1)

and design optimal feedback control u(t, x) such that the
controlled diffusion process

dYt = [A(Yt) + Bu(t, Yt)] dt + B(Yt) dWt, Y0 = x0 (2)

has its time T marginal equal to the target distribution, YT ∼ π

I Independent simulations of Yt produce samples of π

Background on controlled SDEs
Markov generator

Aψ = 〈A(x),∇ψ〉 +
1

2
Tr
[
B(x)B(x)∗∇2ψ

]
(3)

I Linear operator on C2(Rd) that describes evolution of statistics of
SDE

Kolmogorov backward equation

Let f ∈ C2(Rd) be strictly positive over Rd and Φ(t, x) = E[f (XT )|Xt = x]
be the solution to the Kolmogorov backward equation:{

∂tΦ +AΦ = 0

Φ(T, x) = f (x).

Doob h-transform
If u(t, x) = B(x)∗∇ log Φ(t, x) is the controller, then the density of YT is

ηuT (x) =
f (x)ηT (x)

Φ(0, x)

where ηT (x) is the reference distribution.
I If f (x) = π(x)/ηT (x), then ηuT (x) = π(x) exactly!

Construction of the controlled SDEs sampler
Choosing a reference process

Desiderata
I Ability to compute time T marginal exactly
I Access solutions to KBE cheaply

Choose linear SDEs of the form:{
dXt = −Xtdt + BdWt

X0 = x0.
(4)

Features
I Exact expression of terminal XT ∼ N (x0e

−t,Σt), Σt = 1
2(1− e−2t)BB∗

I Eigenfunctions of Markov generator can be found exactly and are of the
form

φn(x) =

d∏
i=1

Heni

(√
2

µi
〈x, ei〉

)
(5)

with eigenvalues λn = −
∑d

i=1 ni, B∗ei = µiei.
I Cheap solutions to the KBE:

f (x) =
∑
n

cnφn(x), then Φ(t, x) =
∑
n

cne
λn(T−t)φn(x). (6)

Projecting onto eigenfunctions
Project f (x) = π(x)/ηT (x) onto eigenfunctions

I Define f̃ (x, c) =
∑

n∈I cnφn(x), where I ⊂ Nd
0 is some set of multi-indices.

I Write the exact and approximate densities as

π0(x) =
f (x)ηT (x)

γ
, π̃(x) =

f̃ (x, c)ηT (x)

γ̃
, (7)

γ (unknown) and γ̃ =
∑

n∈I cne
λiTφn(x0) are the normalizing constants

I Minimize KL divergence from π̃ to π0: minc∈R|I| Eπ0 [log π0(x)− log π̃(x)] .

I Resulting optimization problem:

max
c∈R|I|

EηT

[
f (x) log

f̃ (x, c)

γ̃(c)

]
. (8)

I Objective function evaluated by sample average approximation

Choosing the terminal marginal ηT and initial condition x0

I Choosing terminal marginal is an open question
I In numerical examples, ηT found ad hoc
I Initial condition is always deterministic and based on terminal marginal

Rules of thumb
I Choose ηT such that objective function estimated with low variance
I Heuristic: find a normal approximation of π via Laplace approximation,

expectation propagation or mean-field variational Bayes.
I Center π so that ηT of the form N (0,Σ

Algorithm summary
Input: Unnormalized target density π(x), set of multi-indices I ⊂ Nd

0

Output: Optimal control u(t, x)

1: Find an approximation η(x) = N (0,Σ) to π(x), define f (x) = π(x)/η(x)
2: Compute Σ = V ΛV ∗

3: Set B =
√

2Λ
1−e−2TV

4: Construct eigenfunctions {φn(x)}n∈I
5: Draw M independent X (i) ∼ N (0,Σ)

6: Solve c∗ = arg maxc∈R|I|
1
M

∑M
i=1 f (X (i)) log f̃ (X(i),c)

γ̃(c) where
f̃ (X (i), c) =

∑
n∈I cnφn(X (i)), and γ(c) =

∑
n∈I cne

λn(T−t)φn(x0)
7: Doob h-transform is u(t, x) = B∗∇ log

∑
n∈I c

∗
ne

λn(T−t)φn(x).

Numerical examples when the method works
1D example

I π(x) = 0.6N (x; 1.8, 0.72) + 0.4N (x;−2.6, 0.92)

I ηT = N (x; 0, 1.42)

2D example

I − log π(x) = 0.5
(
‖x‖2−1.5

0.7

)2

− log

[
exp

(
−
(
x1−2
0.8
√

2

)2
)

+ exp

(
−
(
x1+1.5
0.8
√

2

)2
)]

I ηT is normal with Σ = diag(0.6, 1)

Numerical examples when the method fails
1D example

I π(x) = 0.6N (x; 4, 0.52) + 0.4N (x;−3.6, 1.52)

I ηT (x) = N (x; 0, 4) (top row) and ηT (x) = N (x; 0, 36) (bottom row)

2D example: π(x) same as in the above 2D example
I ηT is normal with Σ = 1.5I (left), and Σ = 0.3I (middle)

Why is it not better?
Fundamental issues

I Method is highly sensitive to parameters – need to be carefully tuned
I When marginal ηT is chosen poorly, then approximating class cannot capture

target properly in practice
I These issues are independent of the nature of the resulting optimization

problem or how well the objective can be evaluated

Other issues hindering implementation
I Robust evaluation of the objective functions
I Scaling the approach to higher dimensions— requires judiciously choosing

basis functions

http://uqgroup.mit.edu

http://uqgroup.mit.edu

