Sampling via Controlled

Stochastic Dynamical Systems

Abstract

We present a framework for constructing controlled stochastic differ-
ential equations (SDEs) that exactly sample from a class of probability
distributions with Gaussian tails. By choosing the reference process to
be a linear SDE, we can find the optimal control that guides the system
to a target distribution by only solving a static optimization problem. In
practice, the method lacks robustness due to the high sensitivity to the
algorithm’s parameters.

Motivation

» Computing expectations with respect to complex probability
distributions is ubiquitous in statistics and ML

» Efficient sampling methods for distributions yield estimators for
approximating expectations

» Finding controlled SDEs enables exact sampling of target
distributions

Problem setting
» Given an unnormalized target density (), design reference
SDE
dX; = A(Xy) dt + B(X,)dW,, X, =z (1)

and design optimal feedback control «(¢, x) such that the
controlled diffusion process

dY; = [A(Y;) + Bu(t,Y;)] dt + B(Y;)dW;, Y, =z (2)

has its time 7" marginal equal to the target distribution, Y, ~ 7
» Independent simulations of Y; produce samples of 7

Background on controlled SDEs

Markov generator

A = (Alz), Vi) + %Tr B(2)B(2)' V2] 3)

- Linear operator on C%(R?) that describes evolution of statistics of
SDE

Kolmogorov backward equation

Let f € C*(RY) be strictly positive over R? and @(¢, z) = E[f(X7)|X; = 7]
be the solution to the Kolmogorov backward equation:
(5,0 + AD =0

<\<I>(T, r) = f(x).

H '
€

Doob A-transform
If u(t, x) = B(x)*V log ®(¢, z) is the controller, then the density of Y7 is

77T($) T (I)(O,QZ’)

where nr(x) is the reference distribution.
» If f(x) = 7(x)/nr(x), then n%(x) = w(z) exactly!

http://uqgroup.mit.edu

Benjamin J. Zhang', Tuhin Sahai-, and Youssef M. Marzouk'

Construction of the controlled SDEs sampler

Choosing a reference process

Desiderata
» Ability to compute time 17" marginal exactly
» Access solutions to KBE cheaply
Choose linear SDEs of the form:

(dX, = —X,dt + BdWV,
X() — Xy.

9

Features
~ Exact expression of terminal X ~ N (z¢e™", %), ; = 3(1 — e *)BB"
» Eigenfunctions of Markov generator can be found exactly and are of the
form

D) = H He,, (f@; ei>)

with eigenvalues \,, = — 37 n;, B*e; = e,

» Cheap solutions to the KBE:
f(x) = Z CnOn(z), then &(t, x) = Z cne’ T, ().

n n

Projecting onto eigenfunctions

Project f(z) = n(x)/nr(x) onto eigenfunctions

- Define f(z,c) =, s cadn(z), where T C NY is some set of multi-indices.
» Write the exact and approximate densities as

_ fnr(z)
mo(z) = — () S

v (unknown) and § = > - che’! ¢, (z0) are the normalizing constants
» Minimize KL divergence from 7 to my: min gz Er, [log mo(x) — log 7(z)] .
» Resulting optimization problem:
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~

f(z,c)
(%%}I{' Ey | f(2)log (0)

» Objective function evaluated by sample average approximation
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Numerical examples when the method works

1D example

» m(x) = 0.6 N (2;1.8,0.7%) + 0.4 N (x; —2.6,0.9%)
- nr = N(z:;0,1.4°%)

0.4 0.4 0.4 0.4 0.4 —— Exact
orward

0.3 0.3 0.3 0.3 0.3
Z 02 0.2 0.2 0.2 0.2
o)
o
0.1 0.1 0.1 0.1 0.1
0 0 0 0 0
: 5 -5 ' : 5 5

0.15 - 0.15 0.15 0.15 — 0.15

5 0.1 e i i L 1 | 1 i
8* f - |
l': 0.05 0.05 0.05 | | r 0.05 A 0.05 I
I e L L . L | L
. 5 -5 . . 5 -5
€T T €T T

ty

2D example
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» nr is normal with 3 = diag(0.6, 1)
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Choosing the terminal marginal n»; and initial condition x

» Choosing terminal marginal is an open question
» In numerical examples, nr found ad hoc
~ Initial condition is always deterministic and based on terminal marginal

Rules of thumb

» Choose 7 such that objective function estimated with low variance

» Heuristic: find a normal approximation of = via Laplace approximation,
expectation propagation or mean-field variational Bayes.

» Center 7 so that 5 of the form N (0, X

Algorithm summary

Input: Unnormalized target density 7 (z), set of multi-indices Z ¢ N¢
Output: Optimal control u(t, z)
1. Find an approximation n(z) = N (0, X) to n(z), define f(x) = n(x)/n(x)
2. Compute X = VAV*
s: Set B = /=4, V
4. Construct eigenfunctions {¢,(x) }nez
5. Draw M independent XV ~ N(0, X)

o: Solve ¢* = arg max,cpr 17 S FA(X D) log f%{(g’c) where
F(XY ¢) = > ez Cn®n(X W), and y(c) = 37, o7 cne T (1)
7. Doob h-transformis u(t, z) = B*Vlog >, . c: e’ T, (x).
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Numerical examples when the method fails

1D example

» m(x) = 0.6 N (x;4,0.5%) + 04N (z; —3.6,1.5%)
» nr(x) = N(x;0,4) (top row) and nr(z) = N (z: 0, 36) (bottom row)
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2D example: 7(x) same as in the above 2D example
» pr IS normal with 3 = 1.51 (left), and X = 0.3I (middle)
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Why is it not better?

Fundamental issues

» Method is highly sensitive to parameters — need to be carefully tuned

» When marginal nr is chosen poorly, then approximating class cannot capture
target properly in practice

» These issues are independent of the nature of the resulting optimization
problem or how well the objective can be evaluated

Other issues hindering implementation

» Robust evaluation of the objective functions

» Scaling the approach to higher dimensions— requires judiciously choosing
basis functions
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